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Abstract—In the face of increased threats within software
registries and management systems, we address the critical
need for effective malicious code detection. In this paper, we
propose an innovative approach that integrates source code
slicing, inter-procedural analysis, and cross-file inter-procedural
analysis, thereby enhancing the detection precision and reducing
false positives. This approach has been encapsulated within
a multi-analysis-based framework for automatic detection of
malicious code in real-world software packages. In its application
to major third-party software registries like PyPI and NPM,
our framework has proven effective, identifying 130 malicious
packages from a total of 169,640 monitored over a continuous
period of five weeks. This work advances the current state-
of-the-art solution to malicious code detection, demonstrating
significant practical impact in strengthening the software supply
chain defense.

Index Terms—Malware Detection, Software Supply Chain
Security, Security Tools

I. INTRODUCTION

In the current age of digital interconnectedness, software

registries and management systems such as Python Package

Index (PyPI) and Node Package Manager (NPM) play a

pivotal role in fostering development efficiency and code

reusability. However, as these registries burgeon with open

source contributions, they inherently carry a potent threat —

they are a ripe platform for the proliferation of malicious

code. This insidious malware, disguised within useful software

packages, can engage in surreptitious activities such as unau-

thorized network connections [1], covert screen or keyboard

monitoring [2], concealing processes, reserving clandestine

passwords or keys [3], etc. Consequently, such behavior not

only jeopardizes the dependability of computer systems, but

also induces severe losses and risks to users. Particularly

concerning is the effect on the software supply chain, as

a compromised package can trickle down into numerous

applications, therefore amplifying the impact manifold.

Addressing the intricate challenge of malicious source code

detection presents three primary obstacles. Firstly, the effec-

tiveness of binary-based virus scanning engines is hindered
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due to the wide array of programming languages and the

evolving nature of threats, leading to an inability to accurately

detect concealed malware. Secondly, existing detection tech-

niques, essential for single-file and full source code evaluation,

tend to overlook threats or falter with large-scale software

registry environments. Lastly, despite extensive research in

malicious code including traceability analysis and program

deconstruction, existing malware detection approaches (e.g.,

rule-based scanning and intra-procedural analysis [4]) require

intensive manual labor and often yield unsatisfactory accu-

racy. Even with the introduction of artificial intelligence for

automated detection, the absence of a comprehensive cross-

file analysis approach compounds the imprecision of these

methods. These intertwined challenges underscore the urgent

need for an innovative, robust solution to enhance the detection

and prevention of malicious source code in software registries.

Having identified these challenges, we proceeds to construct

solutions that address these specific issues, drawing on the

insights we have gained through a manually-verified pilot

study (to be detailed in Section III). Our first key insight is

the shift from traditional binary-based scanning engines to a

more sophisticated source code slicing approach, enhancing

the effectiveness of malicious code detection. Source code

slicing allows for access to the primitive and rich form of

code, enabling more in-depth information gleaned. In contrast,

binary scanning engines only deal with compiled code, where

certain high-level language features may be lost or become

obscure during the compilation process. Notably, unlike binary

scanners that can only be employed after software construc-

tion, source code-based detection enables intervention at early

stages of software development. This allows for the early-stage

identification and rectification of potential malicious code or

security vulnerabilities prior to code commits, reducing the

cost and risk associated with later-stage remediation.

Our second key insight is the integration of inter-procedural

analysis with detailed program slicing, which enables a pre-

cise interpretation of malicious behavior and their contexts.

In the pilot study (to be detailed in Section III), we have

delved into exploring the characteristics of potentially mali-

cious packages within real-world open-source software hosting

platforms abundant with data. Our investigations unveil that

real-world malicious code often exhibits a level of complexity,
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diversity, and concealment in triggering processes that goes

beyond typical expectations. Hence, to effectively detect large-

scale real-world malicious code activity, a more nuanced, in-

depth analysis targeting malicious semantics is necessitated.

Consequently, we amalgamate inter-procedural analysis with

finer-grained program slicing to comprehensively examine and

interpret programs from both macroscopic and microscopic

perspectives, assisting us in pinpointing the triggering paths of

malicious behavior and their related contexts. In particular, to

reduce the high false-positive rates of the detection process, we

have further enhanced our approach by leveraging the cross-

file inter-procedural analysis. This strategy allows us to better

understand code semantics through API and taint analysis, and

offers a novel perspective for a more systematic and effective

examination of malicious behavior in on-chain code.

Our Work. Building upon our two key insights, we have

designed and implemented a novel multi-analysis-based frame-

work to automatically detect malicious code in real-world

software packages. The framework consists of three crucial

modules: a more precise program analyzer, a package meta

data analyzer, and a malicious behavior detector leveraging

customized detection rules and semantic analysis. We integrate

inter-procedural and cross-file analyses into our framework,

enhancing its ability to detect malicious code. We have applied

this framework to widely-used third-party software registries,

including PyPI and NPM. Over a continuous monitoring

period of five weeks, our framework has effectively identified

130 malicious packages from a total of 169,640 packages

within these two registries, including 23 in NPM and 107 in

PyPI. These findings demonstrate the high effectiveness and

practicability of our framework.

We summarize the main contributions of this paper below:

• Innovative Malware Detection Approach. We have de-

veloped a sophisticated detection approach that integrates

source code slicing, inter-procedural analysis, and cross-

file inter-procedural analysis, using CodeQL for parsing.

This holistic strategy enhances detection precision, im-

proves interpretation of malicious behavior and contexts,

and successfully reduces false-positive rates.

• Outstanding Efficacy and Enhanced Usability. We

have made multi-dimensional comparisons of MAL-

WUKONG with state-of-the-art approaches on the ground

truth dataset we built. The results reveal that our method

provides higher and better implementation in terms of

detection accuracy, granularity, and usability of the tool.

• Real-World Practical Impacts. Our innovative detection

approach has been successfully applied to real-world

software registries such as PyPI and NPM. And we

identify 130 malicious packages from a total of 169,640

monitored over a continuous period of five weeks [5].

Strikingly, we discovered a previously undetected family

of malicious NPM packages that attempted to distribute

phishing links or malware through the NPM platform.

II. BACKGROUND

A. Malicious Code Categorization in Software Supply Chains
The growth of the open-source community and the rising

use of its software have spurred an increase in open-source

packages. This leads to a complex dependency network that,

while beneficial for development, also raises the potential

for software supply chain attacks and security risks. As per

Snyk’s report[6], there has been a notable increase in malicious

code from problematic packages since mid-2022, highlighting

a shift towards more complex and obscure on-chain mali-

cious actions. To facilitate their detection, we categorize the

malicious code types as shown in Table I.Note that simply

marking code obfuscation as malicious (M5 listed in the table),

which is commonly adopted by many detection techniques [7],

inevitably leads to elevated false positives. As mitigation,

we only focus on the obfuscated content that may contain

encrypted malicious code for more accurate detection.

TABLE I
CLASSIFICATION OF VARIOUS MALICIOUS CODE.

Tag Malicious Category Description

M1 hidden auth
Bypassing verification by using special keys

or certificates to log into remote services.

M2 backdoor
A hidden entry in a system or software,
including trojans, file manipulation, etc.

M3 cryptojacking
Using a computer’s resources without the
owner’s consent to mine cryptocurrencies.

M4 embedded shell
Embedding malicious shell commands

or scripts within other normal programs.

M5 suspicious obfuscation
Obfuscating the source code to make it

difficult to understand, analyze, and reverse.

M6 remote control
Controlling the target system remotely

and executing malicious operations on it.

M7 send sensi info
Leaking sensitive information from the internal

to the external without permission.

M8 suspicious exec
Execute suspicious commands such as

deleting files to achieve illegal purposes.

B. Malicious Package Detection Techniques and Tools
A broad array of work has been done in malicious code

detection within open-source software supply chains, ranging

from threat detection algorithms to comprehensive security

frameworks. Two notable contributions are MALOSS [4] and

GUARDDOG [8], which have been closely examined versus

our proposed technique in this study. In particular, MALOSS

offers a comprehensive view of the software supply chain

security landscape by constructing and analyzing software

dependency graphs to identify vulnerabilities and how they

propagate through dependencies. However, its detection pat-

terns might overlook subtle, intricate patterns that do not

manifest in these structures. GUARDDOG, on the other hand,

leverages static code analysis and rules-based methods to spot

malicious software packages. However, its heavy reliance on

predefined rules could curtail its capability to identify novel

malicious tactics. We will detail the comparison in Section V.

C. Code Semantic Analysis Engines
Code semantic analysis engines [9], [10], [11] are tools de-

signed to enhance code analysis by creating a comprehensive
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information about a source code, including syntax, control

flow, data flow, semantics, etc. In particular, we utilize Cod-

eQL [12] in this work. It incorporates various elements such

as Abstract Syntax Trees (AST), Control Flow Graphs (CFG),

and data flow information. This allows for specific code

patterns or potential security vulnerabilities to be identified

using SQL-like queries, which are capable of deeply mining

the semantic information of code files. It is adept at identifying

complex security vulnerabilities that traditional syntax analysis

or pattern matching tools might overlook. CodeQL supports

multiple programming languages, enhancing its versatility. In

our context, CodeQL substantially improves our understanding

and interpretation of malicious code detection and subsequent

rule-making, providing us with a deeper insight into the

semantics of malicious code within open-source packages.

III. A PILOT STUDY

A. Study Overview
In our pilot study, we aim to understand the critical role that

malicious semantics play in source code analysis, and how

it could be utilized to enhance the malicious code detection.

Our focus is to evaluate the performance of VirusTotal [13], a

highly reputed global threat detection platform that integrates

over 40 antivirus engines and is competent at scanning various

file types for threats. We observed that while VirusTotal per-

forms well in most scenarios, its efficacy in parsing malicious

semantics in source code seems moderately weak, leading to

a substantial number of false positives and false negatives.

B. Evaluation Settings
To provide an empirical analysis, we utilized 100 malicious

JavaScript source code packages randomly selected from the

Snyk [6] database for NPM packages, covering all the cate-

gories listed in Table I. These packages have previously been

confirmed to contain malicious behavior, making them an ideal

sample set for our study. Our objective was to assess the

false alarm rate of VirusTotal when scanning these packages,

particularly looking at cases where malicious packages were

not detected and when detected threats did not align with the

actual type of malicious behavior in the packages.

C. Results
As listed in the Figure 1, we observed that VirusTotal mis-

classified a significant number of malicious packages, leading

to a high false alarm rate of approximately 90%. Among these

100 malicious samples, VirusTotal could only successfully

detect 12, of which only 7 were revealed by more than

10 anti-malware engines, leaving the confidence level of the

remaining correct results relatively lower with less than 5 en-

gines reported. We attribute this high rate of misclassification

to several limitations. These include VirusTotal’s inability to

detect less common or subtly concealed malicious activities, its

inaccurate categorization of the types of malicious behaviors,

and its lack of granularity in identifying specific problem areas

within the code. As a result, it becomes clear that traditional

detection systems like VirusTotal struggle when interpreting

complicated malicious semantics, leading to detection errors.

True Positive (TP)

12.0%

False Negative (FN)

51.0%

False Positive (FP)
37.0%

Category Total TP FN FP

Sensitive Data Leakage 64 1 28 35

Code Obfuscation 12 2 8 2

Trojan Downloading 8 2 4 0

Embedded/Hidden Shell 5 2 3 0

Remote Control 5 1 4 0

Malicious URL 3 0 3 0

Suspicious Command 3 2 1 0

Cryptomining Malware 2 2 0 0

Fig. 1. Results of Manual Check from VT.

D. Case Studies

For a more intuitive explanation, we provide two cases from

the PyPI and NPM platforms respectively, each showcasing the

complexity of modern malicious code and the limitations of

conventional detection tools.

An Example NPM Package. In our first case study as

shown in Figure 2 (a), we dissected the actions of a JavaScript

package named @seller-ui. This package cunningly performs

a series of malicious actions disguised as a penetration test

using pre-install scripts. It downloads and executes suspicious

commands from external, unidentified sites using the eval
function. It can gather critical information such as hostnames,

usernames, network interface names, and can also establish a

SOCKS5 proxy to create a tunnel within a target infrastructure.

This allows not only data gathering but also the transfer of

additional malicious code or commands, creating a hidden

vulnerability that can disrupt systems and steal data. Despite

this significant threat, when this package was run through

VirusTotal, all the engines failed to detect these activities.

An Example PyPI Package. The second case study exam-

ined a Python package named duonet from the PyPI platform,

as shown in Figure 2 (b). On the surface, duonet appears as a

typical Python package, but under the hood, it imports (i.e., by

pip install typesutil) a malicious package capable

of fetching malware from a remote server. It exploits the

unsuspecting setup.py script to initiate a Python code (by

exec), which in turn triggers an open-source Python-based

trojan named W4SP Stealer[14]. This trojan is designed to

steal a variety of crucial system information, including files,

passwords, browser cookies, system metadata, Discord tokens,

and data from various cryptocurrency wallets. Despite the
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Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 30,2023 at 08:42:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Examples from NPM (a) and PyPI (b) Packages. The positions marked with red strokes represent sink APIs, the green represent source
APIs, and the yellow denote sensitive parameters, such as URLs and system information.

extensive and severe malicious method chain, all of the engines

in VirusTotal considered the duonet package harmless.

E. Key Insights

These two case studies, despite their differences, share a

common narrative - the stealthy, sophisticated nature of mod-

ern malicious codes that conventional detection tools struggle

to capture. Simple rule-matching mechanisms are increas-

ingly falling short as attackers evolve their tactics, employing

obfuscation, encryption, and multi-step execution to deceive

detection tools. Our findings underscore the importance of a

two-fold strategy to address this challenge. First, we must de-

velop an in-depth understanding of malicious semantics, going

beyond surface-level scans to understand the complex web of

interactions that form the core of these threats. Second, we

must bolster this understanding with powerful detection tools

capable of parsing this complexity and accurately flagging

these threats.

IV. METHODOLOGY

As shown by the overview in Figure 3, the proposed frame-

work consists of four modules: 1) in-depth static analyzer, 2)

package meta information analyzer, 3) rule matcher and 4)

CodeQL security engines for maintaining universality among

multiple languages. Alongside the detailed explanation on their

implementations, we will also explain how we address the

existing challenges.

A. In-depth Program Analysis

In response to the high false positive rates and inaccu-

rate analysis observed in our pilot study, we implemented a

thorough source code slicing analysis, as illustrated in Fig-

ure 4. We integrated control flow and data flow with function

information for an advanced taint analysis, inspired by the

techniques used in compiled languages such as C/C++[15]

and Java[16]. Leveraging function call chains that encapsulate

cross-function or cross-file details, we conducted an inter-

procedural analysis to capture more detailed and profound

source code semantics, targeting the extraction of malicious

semantic information.
1) Control-flow and Data-flow Analysis: Through this

step, we aim to derive the information flow graphs that can

be further utilized in the subsequent taint analysis and inter-

procedural function calling path generations.

As the green flow directions illustrated in Figure 4, control

flow graphs (CFG) explicitly outline the sequence in which

code statements are executed, as well as the conditions that

must be satisfied for a specific execution path to be chosen.

We use control flow to grasp the relations among various

functions and the execution orders, laying the groundwork

for function calls within a method or class and supplement

the cross-file analysis with malicious behavior triggering path.

In our motivating example in Figure 2, the specific dynamic

eval function eventually executes the dangerous commands

received from an unknown external website via HTTP GET
request, thus bring risks.

On the other hand, we analyze data flow to study the

movement of data within a program, focusing on how variables

get their values and how these values propagate through the

program, eventually providing effective reachability analysis

for taint analysis. After analyzing definitions and usages of

variants from the given source code, we gain the holistic
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Fig. 3. The Architecture and Workflow of Our Framework.

view of the key API parameters calling status as well as data

dependency relations. In our motivating example in Figure 2,

we depend on data flow analysis to catch the flows from the

os.userInfo().username to dns.lookup function,

which leads to a potential system information leakage.

The amalgamation of control- and data-flow analyses aids in

the synthesis of a comprehensive understanding of a program’s

behavior, which is crucial for improving the efficiency and

reliability of our subsequent taint analysis and inter-procedural

function call analysis.

Fig. 4. Analysis of the JS Code Example from Figure 2(a).

2) Taint Analysis: By categorizing source-sink pairs and

using the data flow information obtained in the previous stage,

we aim to derive potential malicious behavior triggering paths

effectively through taint analysis. However, the key challenge

in this context lies in accurately defining the source and sink

points. As different types of malicious code exhibit both shared

and distinct characteristics, deriving the accurate source-sink

pairs is thus crucial for effectively identifying malicious code.

To this end, we have constructed API-based characteristic

sink-source pairs for different malicious behaviors for taint

analysis. They are described in detail in our online doc-

umentation [17]. The pair construction mainly draws from

the following insight: regardless of the programming lan-

guages (i.e., JavaScript or Python), specific malicious behav-

iors share similar source-sink pairs. For instance, most mali-

cious behaviors (e.g., backdoors and embedded shells) have

sinks related to dynamic execution (e.g., exec and eval),

with the distinction being the different malicious files or

commands executed at the source points. For another example,

sensitive information leaks involve file reading sources (e.g.,

createReadStream) and network transmission sinks (e.g.,

http.request).

Inspired by Doublex [18] and Pysa [19], a thorough

taint analysis will be carried out according to the source-

sink pairs. More specifically, for an identified [source,
sink] string or a sink point, the suspicious behavior

within the code will be recorded. For instance, with source

and sink highlighted in green and red respectively in

Figure 2, the taint path pairs [http.get, eval] and

[os.userInfo().username, dns.lookup] can be

obtained after analyzing the execution paths, thus pinpointing

the location and triggering path of the malicious code.

3) Function Call Graph Generation: A function call graph

is a directed graph where nodes represent functions within a

program and edges denote function calls. Each edge points

from the calling function to the called function, effectively

encapsulating the hierarchical structure of function invocation

in a program. With its help, we strives to understand the call

execution process of suspicious code, identify potential attack

vectors, and further provide useful information for cross-

function and cross-file analysis. Combining this with taint

analysis, we can track potentially-harmful data flow through-

out the system for effective malicious code identification.
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In our example in Figure 2, we can plainly obtain the

function call chain from the caller function collectStats
to the callee function getNetworkInterfaces, which

showcases the calling order and potential malicious execution

of these suspicious code. Moreover, function call graph anal-

ysis can be used to identify potential attack vectors, such as

vulnerable functions that can be reached from untrusted inputs.

In summary, the function call analysis spanning across meth-

ods and files provides invaluable support for our subsequent

inter-procedural analysis.

Algorithm 1: Cross-file Inter-procedural Analysis

Input: AST of the code, func nodes of all methods
Output: FCG of inter-procedural function calling sequence

1 Function getImportedNodes(func nodes):
2 for node ∈ ast.children do
3 if node is ImportDeclaration then
4 func nodes.append(node.specifier)

5 end
6 end
7 end
8 Function getCallChain(func, func nodes, FCG):
9 for node ∈ func.children do

10 if node is CallExpression then
11 callee ← node.callee
12 if callee ∈ func nodes then
13 FCG[func] ← node

14 getCallChain(node, func nodes, FCG)
15 end
16 end
17 end
18 end
19 getImportedNodes(func nodes)
20 for node ∈ ast.children do
21 if node is CallExpression then
22 callee ← node.callee
23 if node ∈ func nodes then
24 getCallChain(node,func nodes, FCG)
25 end
26 end
27 end
28 return FCG

4) Cross-file Analysis: To obtain a more complete under-

standing of the precise malicious semantics, the analysis of

malicious code requires not only traversing through function

methods but also spanning across files. From the generated

function call graphs and a variety of contexts, we can readily

identify malicious code that results from interactions between

different files or modules.

In our Python code snippet example in Figure 2 (b), we

utilize Algorithm 1 to extract function call graph of multiple

source code files. When MALWUKONG detects suspicious

behavior during the pip install typesutil process,

it further investigates the typesutil package’s source code.

By applying sensitive keyword rule matching, we identify

suspicious code at the beginning of the setup.py file, including

exec, b64decode, and an encrypted string encoded with

base64. Decoding the encrypted string reveals malicious

operations involving command replacement and writing of a

remote unknown file locally. The resulting cross-file function

list from the algorithm includes [pip install, exec,
base64.b64decode, NamedTemporaryFile,
urlopen, executable.replace].

B. Meta Information Analysis

In addition to detailed source code slice analysis, we also

delve into the package’s metadata information and scrutinize

the operational details of certain preinstall and setup modules

from a global standpoint. Such information is useful for

determining the entry characteristics in the registries and the

impact range of malicious packages.

1) Package Information Analysis: We aim to extract and

interpret the structured information for describing the prop-

erties and context of each package. IN particular, we cover

both basic (e.g., name, version, and author) and extended

information (e.g., package descriptions and upload times).

2) Preinstall/Setup Scripts Analysis: Examining the code

behavior during the preliminary deployment stage, especially

those preinstall or setup scripts execution in the installations

phase, can enhance our detection efficiency. In NPM, these

are specified in the preinstall of scripts field of the

package.json file. In Python, these scripts are usually found in

the setup.py file. In our NPM example in Figure 2, malicious

code in the preinstall.js file that sends requests to

suspicious URLs threats system security, and the operation that

can trigger this malicious code is the preinstall statement node
preinstall.js in the deployment file. Similar operations

could also occur in Python packages.

C. Rule-based Detection and Malicious Semantics Analysis

1) Rule Matching Mechanism: To enable effective detection

of varying types of malicious code behaviors, it is essential

to develop specific detection rules respectively. We apply

YARA [20] rules as part of the detection tools for each cate-

gory of malicious behavior, shown in Listing 1. For instance,

we consider the following concepts for constructing the sensi-

tive data leakage rules: sensitive data definition, uncommon

communication paths, specific API calls. Overall, we have

provided detection rules for 8 categories of malicious code,

including pre-matching and preliminary filtering for sensitive

keywords. After filtering, combined fine-grained code slices

with rule matching of specific types of malicious code, and the

powerful security engine, we can obtain the triggering process

of malicious code.

2) Malicious Semantics Analysis using CodeQL: To further

enhance the accuracy of our detection with the malicious

code semantics, we utilize the CodeQL security engine as a

supplementary tool. The brief analysis process is as follows:

1). The generated code slices from our previous methods

are loaded into the CodeQL database. 2). We perform an

automated batch scan using a set of custom CodeQL queries

integrated with the official query library. 3). The detection

results are then compared with the rule matching classification

to draw final conclusions.
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1 r u l e s e n d s e n s i i n f o
2 {
3 meta :
4 d e s c r i p t i o n = ” D e t e c t i o n o f Sending
5 S e n s i t i v e I n f o r m a t i o n i n NPM/ JS Malware ”
6 t a g = ” s e n s i i n f o l e a k a g e ”
7 s t r i n g s :
8 $ s o u r c e a p i 0 = ” os . hos tname ”
9 $ s o u r c e a p i 1 = ” p r o c e s s p l a t f o r m ”

10 . . . . . .
11 $ s i n k a p i 0 = ” dns . r e s o l v e 4 ”
12 $ s i n k a p i 1 = ” g o t . p o s t ”
13 . . . . . .
14 $keyword 0 =
15 ” cao7fopgf ihso700cu0goxnnm6twgh1a1 . xxx . n e t ”
16 $keyword 1 = ” . oz . b . xxx . i n f o ”
17 . . . . . .
18 c o n d i t i o n :
19 any o f ( $ s o u r c e a p i * ) and any of
20 ( $ s i n k a p i * ) and any of ( $keyword *)
21 }

Listing 1. A YARA Example for M7 Detection.

V. EVALUATION

Our evaluation targets the following research questions:

• RQ1: How effective is our framework? This RQ studies

the accuracy and time consumption of our approach.

• RQ2: What are the improvements of our framework?
This RQ makes comparison of our framework with some state-

of-the-art techniques.

• RQ3: What is the feasibility of our framework on
large-scale real-world datasets? This RQ evaluates the prac-

ticality and robustness of our framework.

A. Experimental Setup

1) Benchmark Collection: To ensure high-quality evalua-

tions, we carefully curate a comprehensive benchmark dataset.

It is sourced from real-world software package management

platforms, comprising two parts. The first part is a collection

of verified malicious samples obtained from official security

sources and existing datasets such as Snyk Vulnerability

DB [6] and OSV[21]. The second part consists of confirmed

malicious Python and JavaScript packages extracted from PyPI

and NPM, derived from existing approaches like Maloss [4]

and GuardDog [8]. For C/C++, we leverage a curated dataset

consisting of 547 projects and 14,432 C/C++ files.

Furthermore, to evaluate the real-world detection perfor-

mance (RQ3), we form a real-world package dataset with both

potentially malicious and harmless packages from PyPI and

NPM. We deploy a periodic web crawler to retrieve practical

package data from software registries, and we collect related

information from May 1st to June 4th by the official BigQuery

repository[22]. We have collected 86,412 packages for Python

from PyPI mirror stations [23] and 83,228 files for JavaScript

from NPM official website [24].
2) Baseline Tools: There is a limited number of research

and products focused on open source malicious code detection.

As part of the comprehensive evaluation of our framework,

we compare it on Python and JavaScript with existing base-

line tools, namely MALOSS and GUARDDOG. The detailed

information and results are available in section V-D.

3) Evaluation Metrics: We employ several metrics to assess

the performance of the approaches. These metrics include True

Positives (TP , number of packages correctly classified by their

malicious types), False Positives (FP , number of packages

incorrectly classified by their malicious types), True Negatives

(TN , number of packages correctly classified as harmless),

and False Negatives (FN , number of malicious packages

classified as harmless). To measure the overall effectiveness

of MALWUKONG, we utilize the precision, recall, and

F1 score as comprehensive evaluation metrics.

B. Implementation

We have implemented a detection prototype system MAL-

WUKONG that adopts the methodology described in section IV

and currently supports three languages: Python, JavaScript,

and C/C++. We will continue to iterate on this system in the

future to support more compiled and interpreted languages,

such as Java and Go. Our experiments are conducted on a

server running Ubuntu Linux of 22.04 version with two 64-

core AMD EPYC 7713 and 256 GB RAM.

C. Effectiveness of Our Framework

To evaluate the effectiveness of MALWUKONG in malware

multi-class classification, we utilized the framework to analyze

the ground truth dataset. Our ground truth dataset consists

of 311 samples of malicious code from PyPI, 236 samples

from NPM, and 459 samples of C/C++. These samples were

manually labeled into 8 categories (as listed in Table II) by

three experienced security researchers.

TABLE II
SAMPLE COUNTS IN OUR GROUND TRUTH DATASET.

Malicious Tag M1 M2 M3 M4 M5 M6 M7 M8 Total

JS Sample 7 11 2 5 47 16 132 16 236

Python Sample 26 58 30 59 7 22 75 34 311

C/C++ Sample 48 80 4 55 2 96 150 24 459

Results. As shown in Figure 5, we generate heatmaps of

the confusion matrices for the multi-class classification task

based on the detection results. MALWUKONG demonstrates

great detection performances, having the ability to identify

malicious behaviors proficiently across all categories.

Analysis. Figure 5(a), Figure 5(b), and Figure 5(c) desper-

ately show the distribution of alarms in the detection results.

Notably, alarms for the same malicious package may not

be unique, as different types of malware may share similar

features. To assess the classification of malware, we present the

confusion matrix in Figure 5(d), Figure 5(e), and Figure 5(f).

We consider a prediction correct if there is at least one

alarm in the detection results that matches the true label in

the ground truth. Our evaluation focuses on the detection

efficiency for specific types of malware rather than the number

of alarms. For instance, we identified 6 malware packages with

hidden authentication in the NPM ground truth that shared

similarities with backdoor files. Furthermore, we found 16
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Fig. 5. Effectiveness of MALWUKONG in Malware Multi-classification.

malware packages with code obfuscation that exfiltrated sensi-

tive information. A similar situation occurs when considering

the package detection results in PyPI and C/C++. For Python

code, we identify 7 packages containing backdoor behavior

that are also associated with remote control and embedded

shell. This explains why MALWUKONG generates additional

alarms for certain uniquely labeled malicious packages.

ANSWER to RQ1

Ultimately, MALWUKONG achieved an average precision
of 87.1%, recall of 94.1%, and F1 score of 90.5% on

PyPI. Additionally, it achieved an average precision of

96.6%, recall of 85.2%, and F1 score of 90.5% on NPM.

As for C/C++, the precision, recall, F1 score are

88.0%, 86.3%, 87.1%, respectively.

D. Comparison With Other Techniques
We qualitatively and quantitatively compare MALWUKONG

with the state-of-the-art open-source tools MALOSS and

GUARDDOG to demonstrate the superiority.
1) Qualitative comparison: As illustrated in Table III,

we compare detection methodology, comprehensiveness, and

practicality of detection results, while we specifically focus on

product usability.
Detection Methodology Comparison. GUARDDOG takes

a rather crude approach of rule matching for the full source

code, whereas both MALOSS and our MALWUKONG decide

to parse the malicious semantics. MALOSS focuses on single-

file source code, analyzing API usage from the perspective of

the AST, suspicious data flow direction from the perspective

of data flow, and incorporates dynamic analysis. Our MAL-

WUKONG, on the other hand, combines taint analysis and

inter-procedural function call graphs to achieve fine-grained

malicious semantic parsing across files and functions, thereby

enhancing the depth and coverage during code analysis.

Detection Comprehensiveness. MALOSS only provides

binary results, i.e., whether there is malicious code or not,

while GUARDDOG claims that it can provide heuristic match-

ing for 9 types of Python source code and 5 types of JavaScript

source code. However, its multi-class results only provide the

number of malicious behaviors, and lack information such as

line numbers.

Detection Practicality. Generally, the more comprehensive

the reporting results are, the easier it is for users to fix these

malicious codes. Thus, our MALWUKONG demonstrates a

substantial superiority in terms of the completeness of detec-

tion reports, while MALOSS and GUARDDOG only reports

package path and some irrelevant information.

Usability. In addition to the readability of detection reports,

the convenience of deployment has also become a focus of our

attention, considering the interests the industry places on user

experience. During the deployment of MALOSS, our process

was severely hampered by issues such as outdated dependency

packages. In contrast, MALWUKONG and GUARDDOG have

a lighter deployment and are relatively easy to use.

2) Quantitative Comparison: To conduct a fair comparison,

we evaluated all frameworks on our groundtruth benchmark.
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TABLE III
COMPARING MALWUKONG WITH THE STATE-OF-THE-ART MALICIOUS CODE DETECTION APPROACHES.

Approaches (year) Detection Granularity
Result Classification Report Details

Usability
Availability Categories Package Path Category Line Number Key Line Context

MALWUKONG Semantic � 8 for both Python and JS � � � � High

MALOSS (2020) Semantic � Binary Classes: Malicious/Harmless � � � � Low

GUARDDOG (2022) Source Code � 9 for Python, 5 for JS � � � � High
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Fig. 6. Detection Results on JavaScript and Python, with MALWUKONG and
GUARDDOG, respectively.

It is important to note that GUARDDOG has a different rule

matching and reporting mechanism compared to our approach,

leading to a higher number of false positives. For cases that

only exhibit one type of malicious behavior actually, we

counted the false positives as n-1, where n represents the

total number of detected malicious issues.

As shown in Figure 6, MALWUKONG achieves strong

results in detecting malicious Python packages, detecting

271 (over 87%) out of the total. It maintains a reasonable

balance with 23 false positives and 17 false negatives. In

contrast, GUARDDOG detects 154 malicious Python packages

but has a higher number of false results, particularly false neg-

atives. For JavaScript packages, MALWUKONG demonstrates

superior detection capabilities, identifying 216 malicious code

packages with only 20 false positives and false negatives

combined. On the other hand, GUARDDOG performs poorly

with higher false rates and lower accuracy.

It is worth noting that MALWUKONG demonstrates superior

detection performance in both Python and JavaScript com-

pared to GUARDDOG, which suffers from a high number of

false negatives and false positives. We attribute these results

to the combined effect of GUARDDOG’s detection mechanism

and pattern matching rules. On one hand, GUARDDOG relies

on full-file source code without deeper information, potentially

missing crucial execution paths and function calling graphs.

On the other hand, its detection rules are broad and simplistic,

leading to a significant number of false positives. For example,

the heuristic rule exec base64 matches all Python source

code files that include base64 encoding and decoding, even

though not all instances are necessarily malicious. A similar

issue occurs in JavaScript detection, where pre-install scripts

are straightly matched without further investigation into the

associated JavaScript files, leading to a high likelihood of false

positives when scanning NPM packages. Additionally, the lack

of comprehensive rules contributes to a significant number of

false negatives, particularly in Python packages. Due to our

reliance on fine-grained program analysis, our tool exhibits a

slight increase in processing time compared to GUARDDOG,

resulting in averaged 15.84 seconds per package under single

thread conditions in our experiments, whereas GUARDDOG

completed in 1.516 seconds.

ANSWER to RQ2

Compared with existing works, MALWUKONG has higher

usability, better detection efficiency, and uses more refined

parsing methods and comprehensive rules.

E. Performance on Large-scale Real-world Dataset

To explore whether MALWUKONG can be beneficial when

applied to real-world complex projects, we evaluate our detec-

tion framework to the real-world composite datasets collected

from PyPI and NPM.

1) PyPI Ecosystem: Among a multitude of 86,412 Python

packages extracted from PyPI during May 2023, we detected

107 packages containing malicious code, which mainly fall

into several categories, as listed in Table IV. Remarkably,

75 are associated with variants of KEKW malware [25], 9

come from different types of information stealers [26], 17

involve packages with multi-layer complex obfuscation for

hiding malicious code as well as suspicious script execution,

and the remaining 6 involve miscellaneous contents such as

typo squatting [27].

Although most of these malicious packages have been

promptly disclosed by major security service providers and re-

search teams, the impact of these malicious packages remains

profound. According to information provided by the PyPI data

retrieval website PePy [28], retrieved from the official Big-

Query repository, the total downloads of these packages have

reached approximately 20,000, which is a staggering number.

In addition, although some of the malicious packages are not

directly disclosed, they have been removed by the official PyPI

within 48 hours of their publication. Despite this, we were still

able to detect many malicious packages with similar functions.
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TABLE IV
SOME RESULTS OF MALWUKONG APPLIED IN PYPI AND NPM REAL-WORLD DATASETS.

Ecosystem Category Family Pacakge Name Version Author Upload Time Source-Sink

PyPI

Send Sensi Info

& Cryptojacking

KEKW

Variants

pythoncolouringslibV2 1.0.0 – 3.0.2 pypiuser583 23/05/02 os.getenv – httpx.post...

schubismomv2 1.0.0 SuSB0t 23/05/03 os.getenv – urllib.request...

obfuscater 1.0.* – 2.0.* Christian F 23/05/06 os.getlogin – requests.get

Suspicious Obfuscation

& Embedded Shell

& Send Sensi Info

WhiteSnake

Stealer

BootcampSystem 1.0.0

WS

23/05/09
b64decode – exec

with obfuscation code...
libidi 0.1 23/05/09

libideee 0.1 23/05/13

Suspicious Obfuscation

& Suspicious Execution

Pasting URL

Script

pyfastcode 1.0.0 pyfastcode 23/05/04

‘‘.join(...) – evalnewhacklib 0.1 taha almahrooqi 23/05/05

pyddosprotect 1.0.0 pyddosprotect 23/05/06

Remote Control
Typo

Squatting
flaaks2 0.1 – 0.3 Mario Nascimento 23/05/10 bash _URL – subprocess.Popen...

NPM

Send Sensi Info

& Suspicious Execution

Dependency

Confusion

stripe-terminal-react-native 999.99.99 intern223123 23/05/20 os.hostname – request.request

gd-company-updates 99.999.0 Kirbyn17 23/06/08 child_process.exec

Phishing URL Distribution

& Malware Distribution

Free Coin

Generator

cashapp00 1.0.0 thismusapha 23/03/19 /

cash-app-money-

generator-tool-updated
7.2.7 ggfhgfhfghfghfg 23/04/01 /

tiktok-coins-free63 1.0.0 tiktok-coins-free63 23/04/02 /

......

This indicates that the impact of malicious packages in the

open source software supply chain is profound and difficult

to completely eradicate. Attackers can easily replicate past

attacks in a different form, which brings challenges to the

defense of supply chain security.

2) NPM Ecosystem: Among the 83,228 NPM packages,

we have identified 23 packages that directly contain malicious

codes, and their malicious behavior can be found in Table IV,

which include 4 packages with embedded shell, 2 packages

for remote control, 2 packages for sensitive information theft,

3 packages for suspicious code execution, and 12 packages

involving obfuscated code hiding malicious behavior.

It is worth noting that, by chance, we have discovered

a newly emerging malware family, which we refer to as

free-coin-generator. Although they do not exhibit

direct malicious behavior, they distribute phishing urls or

malware through deception. In our dataset, we have found

a total of 109 such malicious packages. Furthermore, we

have conducted a large-scale measurement of this malware

family, revealing the existence of over 4,900 malicious variants

(from March 31st to April 10th) within NPM ecosystem. This

indicates that the attackers may have utilized automated scripts

to accomplish the upload and widespread distribution of these

variants. Most of these malicious packages remain in NPM

ecosystem, and we have responsibly disclosed them to NPM.

3) Lessons Learned: Inspired by the malicious packages

detected, we have identified some characteristics of real-world

malicious codes based on our findings.

• Composite Malicious Behaviors. During the actual de-

tection process, malicious behaviors no longer appear

singly but tend to develop in complexity. We have found

many problematic packages that combine two to three or

more malicious behaviors. Our multi-classification method

has performed effective detection and matching. In actual

analysis, the possibility of triggering multiple malicious

behaviors should also be further considered to achieve more

comprehensive analysis.

• Concentrated Upload Time. In the detection, we found

that some packages with similar malicious code created

by different individual accounts share similar upload times,

arousing our suspicion that they were uploaded by the same

group of attackers. The reason could be inferred that a small

number of attackers in the real world have created a large

number of malicious packages through various automated

methods and have set up automatic uploads targeting the

software supply chain within a certain period.

• Beware of Those Abnormal Packages. Among the ma-

licious packages we detected, except for those using de-

pendency confusion attacks, most packages lack effective

description information. More investigations exhibit two

extremes in version updates: either upload a version that al-

ready contains malicious code and never update it, or update

and upload partially harmless code packages multiple times

in a short period to cover up malicious activities. Therefore,

our insight is that similar code packages encountered in the

real world should be given more attention.

ANSWER to RQ3

MALWUKONG can effectively detect vulnerabilities in real-

world open-source packages that involve comprehensive

code features and complex behavior.

VI. DISCUSSION

A. Implications

The significance of the findings in this work is outlined

in the following three aspects. First, our work emphasizes

the importance of semantic analysis in improving malicious

code detection and interpretation, facilitating a more thorough

understanding of potential threats in the software supply chain.

Second, by introducing the concept of cross-file malicious

behavior detection, we illustrate its effectiveness for increas-

ing detection accuracy and reducing reported false positives.

Third, the identification and categorization of 169,640 mali-

cious packages in PyPI and NPM illustrates the practicality
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of our approach and draws attention to the extent of potential

threats in these ecosystems. Overall, these insights provide

enhancements in detecting malicious codes and encourage

future research, contributing to the broader effort to mitigate

the impact of supply chain attacks.

Additionally, we maintain persistent surveillance over ma-

licious code packages within the open-source ecosystem. This

is achieved by consistently acquiring updates from repositories

like PyPI and npm and subjecting them to scrutiny. Concur-

rently, we proactively refresh our rule database, ensuring our

detection remains exhaustive and up-to-date.

B. Threats to Validity

Despite the significant contributions, our work still nonethe-

less carries some limitations that worth noting. First, our model

primarily focuses on PyPI and NPM, leaving other package

ecosystems like RubyGems and CPAN to be explored using

MalWuKong. Nonetheless, considering the shared character-

istics a of these interpreted languages and the generalization

capability of AST-based static analysis techniques, we note

that our methodology possess great potential to be easily

adapted to these ecosystems. Second, while our approach

excels in semantic analysis, detecting obfuscated or encrypted

malicious code poses a significant challenge, as such code may

not manifest clear semantic patterns pivotal in our detection

technique. Our model also assumes a level of consistency in

malicious code patterns, which may not hold true as attackers

continually innovate and evolve. Lastly, our detection model,

though effective, is not completely immune to false positives,

which could potentially result in unnecessary alerts. Future

work is needed to address these limitations and further refine

the detection of malicious code in the software supply chain.

VII. RELATED WORK

The security of software supply chain has been an active

research topic [29], [30], [31], [32], [33], [34], [35], [36],

[37], [38]. We mainly discuss the literature on the identified

insecurities and how they are mitigated.

A. Attacks and Security Risks in Software Supply Chain

Various software supply chain components have been the

target given their pivotal role in the computer ecosystem [39],

[40], [41], [42], [43], [44]. In recent years, the upward trajec-

tory of supply chain attacks targeting package managers has

been notable [45], [46], [47], threatening the security of pre-

built packages that promote code sharing and other benefits.

Among the prior works, Cappos et al. [43] focus on the attacks

related to the design and implementations of package man-

agers. Zimmermann et al. [48] conduct a systematic analysis

of 609 known security issues and uncovered a vast attack

surface within the NPM ecosystem. Bos et al. [44] conduct

an empirical study on supply chain attacks, classifying them

according to the nature of their impact and their position within

the package installation process.

The latest and most-relevant contribution comes from Duan

et al. [4]. The authors propose a framework named MALOSS

and conduct a large-scale empirical study on the security

of three mainstream package managers. They have identified

339 previously-undetected malicious packages. Compared to

their work, we incorporate the semantics analysis to enable a

better detection and interpretation of the malicious intention

from the source code. Our technology achieves more fine-

grained classification of malicious behavior while requiring

less manual efforts.

B. Defenses and Mitigations for Software Supply Chain

In response to the growing concern of malware in software

supply chain, numerous works aim to address this issue with

diversified mitigation strategies [49], [50], [51], [52], [53],

[54], [55], [56], [57], [58], [45]. In particular, BreakApp [59]

aims to isolate untrusted packages to prevent credential theft

and safeguard sensitive data. Mininode [60] is developed

as a static analysis tool specifically developed for Node.js

applications. Its primary function is to identify and eliminate

unused code and dependencies, providing insights into the

current extent of code bloating within JavaScript ecosystem.

Ferreira et al. [61] implement a lightweight permission system

that enforces package permissions at runtime, significantly re-

ducing the risk of malicious updates to package dependencies

and enhancing the overall security of Node.js .

Compared to the existing works, we aim to develop a

framework that enables prompt and automatic identification

of malicious packages, hereby helping reduce the risks prop-

agated to the downstream applications.

VIII. CONCLUSION

In conclusion, our large-scale exploration of supply chain

attacks on PyPI and NPM package managers has yielded

significant findings. We propose and implement an efficient,

accurate and multilingual malicious package detection frame-

work MALWUKONG. This framework have incorporated ma-

licious code semantic analysis for better malicious behavior

interpretation, and enhanced the detection effectiveness by re-

ducing false positives. Our model supports cross-file malicious

behavior detection, extending beyond the limitations of single

file analysis. Utilizing MALWUKONG for detecting 169,640

packages collected from PyPI and NPM, we have unveiled that

130 of them harbor potential threats. With this research, we

aim to contribute to the understanding and mitigation of supply

chain attacks, paving the way for future work in bolstering the

security of open source software ecosystems.
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